Safe Testing: Online, Anytime-Valid Hypothesis Tests

Rosanne J Turner1,2, Alexander Ly1,3, Judith ter Schure1 and Peter D Grünwald1

1. Machine Learning Group, Centrum Wiskunde \& Informatica 2. Brain Center, UMC Utrecht 3. Department of Psychological Methods, University of Amsterdam

Hypothesis testing: a recap

- Goal: decide between hypotheses H0 or H1
- No experiment is perfect: need guarantees on chance of making wrong decision
 - Type I error: falsely concluding H1 is true
 - Type II error: failing to detect that H1 is really true
- Classical hypothesis tests (p-values) only offer guarantees if sample size fixed in advance
- Problem: p-values cannot be used for continuous, online analysis!

What are safe tests?

- Hypothesis tests based on s-values, instead of p-values1
- Test rule: s > α? Reject H0 with type I error guarantee α
- Interpretation: a gambling game
 - High s? Have won your “bet” on H1, keep investing!
 - Low s? Little evidence, lost investment

1. **Before study: easily design a safe test**

- Decide on the maximally acceptable type I error
 - **Expensive error**: unnecessary follow-up work
 - Corresponds to significance level α: often 0.05
- Decide on the maximally acceptable type II error rate
- Determine the minimal relevant difference between H0 and H1 one wants to detect
- Perform a power analysis to determine the maximal study sample size (Figure 1, blue line)
 - The actual expected sample size is lower: can monitor results and stop early (Figure 1, purple line)

![Figure 1](image1.png)

Figure 1. Power analysis for safe two proportions test: number of samples needed with maximal type I error 0.05 and type II error 0.20

2. **During study: safe tests allow for monitoring of evidence and early stopping**

- Safe tests for proportions and t-tests are anytime-valid
- Continuous monitoring of evidence is allowed, experiment can be stopped early if s exceeds threshold
- Profile of early stopped experiments is shown in Figure 2: in 65% of experiments can stop earlier than with p-value test
- Monitoring the p-value and early stopping anyway leads to an inflation of the type I error rate (Figure 3)
- Scientists used p-values this way because feasible alternatives were lacking: possible cause of the reproducibility crisis in science

![Figure 2](image2.png)

Figure 2. 1000 simulations of stopping times with a safe test for two proportions when the true difference is 0.2

![Figure 3](image3.png)

Figure 3. Simulation results illustrating the type I error rate when a p-value (Fisher's exact test) and a safe two proportions test are used in online setting

3. **After study: safe tests allow for optionally continuing research**

- Used a p-value test? Final destination!
 - Combining multiple studies in meta-analysis leads to accumulation bias2; cannot calculate p-value (Figure 4)
 - Scientists do this anyway, reproducibility crisis
- Safe tests allow for optionally continuing your study
 - Based on s-value decide to start new study, for example in case of borderline significance
 - Multiply new and old s-value for one super s-value that still offers a type I error guarantee3
 - Allowed to use different data sources for second s-value

![Figure 4](image4.png)

Figure 4. Problem with meta-analysis: distribution needed for calculating p-value is not known (accumulation bias)

References

1) Grünwald, de Heide \& Koolen, Safe Testing, 2019
2) ter Schure \& Grünwald, Accumulation bias in meta-analysis: the need to consider time in error control, 2019
3) Klous.Sander@kpmg.nl

Want to apply anytime-valid hypothesis tests in your own work? Try our tutorial and \texttt{R} package \texttt{safestats}!

Commit2Data

CWI

Centrum Wiskunde \& Informatica

rosanne@cwi.nl

Acknowledgements

Thanks to Bas de Haan for the illustration